The loess () function can be used to fit a nonlinear line to the data. LOESS and LOWESS (locally weighted scatterplot smoothing) are two strongly related non-parametric regression methods that combine multiple regression models in a k-nearest-neighbor-based meta-model. "LOESS" is a later generalization of LOWESS; although it is not a true initialism, it may be understood as standing for "LOcal regrESSion". LOESS and LOWESS thus build on "classical" methods, such as linear and nonlinear least squares regression. They address situations in which the classical procedures do not perform well or cannot be effectively applied without undue labor. LOESS combines much of the simplicity of linear least squares regression with the flexibility of nonlinear regression. It does this by fitting simple models to localized subsets of the data to build up a function that describes the deterministic part of the variation in the data, point by point. In fact, one of the chief attractions of this method is that the data analyst is not required to specify a global function of any form to fit a model to the data, only to fit segments of the data.


You have no rights to post comments